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Abstract

This paper proposes an algorithm that uses an estimation of the joint distribution of
promising solutions in order to generate new candidate solutions. The algorithm is settled
into the context of genetic and evolutionary computation and the algorithms based on the
estimation of distributions. The proposed algorithm is called the Bayesian Optimization
Algorithm (BOA). To estimate the distribution of promising solutions, the techniques for
modeling multivariate data by Bayesian networks are used. The BOA identifies, reproduces,
and mixes building blocks up to a specified order. It is independent of the ordering of the
variables in strings representing the solutions. Moreover, prior information about the
problem can be incorporated into the algorithm, but it is not essential. First experiments
were done with additively decomposable problems with both nonoverlapping as well as
overlapping building blocks. The proposed algorithm is able to solve all but one of the
tested problems in linear or close to linear time with respect to the problem size. Except
for the maximal order of interactions to be covered, the algorithm does not use any prior
knowledge about the problem. The BOA represents a step toward alleviating the problem
of identifying and mixing building blocks correctly to obtain good solutions for problems
with very limited domain information.

Keywords

Genetic and evolutionary computation, linkage learning, estimation of distribution algo-
rithm, probabilistic modeling, learning Bayesian networks, genetic algorithm.

�Also with the Institute of Computer Science, Faculty of Mathematics and Physics, Comenius University,
Mlynska Dolina, 84215 Bratislava, Slovakia.

yFormerly with the Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, USA.

c2000 by the Massachusetts Institute of Technology Evolutionary Computation 8(3): 311-340



www.manaraa.com

M. Pelikan, D. Goldberg, and E. Cantú-Paz

1 Introduction

Recently, there has been a growing interest in optimization methods that explicitly model the
good solutions found so far and use the constructed model to guide the further search (Baluja,
1994; Mühlenbein and Paaß, 1996; Mühlenbein, 1997; Harik et al., 1998; Pelikan and
Mühlenbein, 1999; Harik, 1999). This line of research in stochastic optimization was
strongly motivated by results achieved in evolutionary computation. However, the connec-
tion between these two areas has sometimes been obscured. Moreover, the capabilities of
model building have often been insufficiently powerful to solve hard optimization problems.

The purpose of this paper is to introduce an algorithm that uses techniques for esti-
mating the joint distribution of multinomial data by Bayesian networks in order to generate
new solutions. The proposed algorithm extends existing methods in order to solve more
difficult classes of problems more quickly, accurately, and reliably. By covering interactions
of higher order, the disruption of identified partial solutions is prevented. Prior infor-
mation from various sources can be used. The combination of information from the set
of promising solutions and the prior information about a problem is used to estimate the
distribution of the promising solutions. New candidate solutions are generated according
to this estimate. The experiments were done with additively decomposable problems with
both nonoverlapping as well as overlapping building blocks. The results indicate that the
proposed algorithm is able to solve most of the tested problems in linear or close to linear
time.

In Section 2, the background needed to understand the motivation and basic principles
of the discussed methods is provided. Section 3 describes the algorithms based on the
estimation of distributions and draws the connection between the methods based on the
estimation of distributions and genetic algorithms. In Section 4, the Bayesian Optimization
Algorithm (BOA) is introduced. Section 5 provides basic information on Bayesian networks.
Section 6 discusses additively decomposable functions and the difficulties with solving this
class of problems using genetic algorithms. The results of experiments are presented in
Section 7. Section 8 discusses the convergence theory that can be applied to the proposed
algorithm and Section 9 addresses future work. The paper is summarized and concluded in
Section 10.

2 Background

Genetic algorithms (GAs) are optimization methods loosely based on the mechanics of
artificial selection and genetic recombination operators. By reproducing and combining
promising solutions, high-quality partial solutions are combined in order to form new
solutions. High-quality partial solutions are often called building blocks (BBs) (Holland, 1975;
Goldberg, 1989). The genetic algorithm implicitly manipulates a large number of building
blocks by mechanisms of selection and recombination. However, a fixed mapping from
the space of solutions into the internal representation of the solutions in the algorithm and
simple two-parent recombination operators soon proved to be insufficiently powerful, even
for problems that are composed of simpler partial subproblems. General, fixed, problem-
independent recombination operators often break partial solutions that can sometimes lead
to losing these partial solutions and converging to a local optimum. Two crucial factors
of the GA’s success, a proper growth and mixing of good building blocks, are often not
achieved (Thierens and Goldberg, 1993). The problem of building block disruption is
often referred to as the linkage problem (Harik and Goldberg, 1996). Various attempts
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to prevent the disruption of important partial solutions have been made and are briefly
discussed in the remainder of this section. The first class of techniques is based on changing
the representation of solutions in the algorithm or evolving the recombination operators
among individual solutions (Goldberg et al., 1989; Harik, 1997; Kargupta, 1998). The
second class of techniques is based on extracting some information from the entire set of
promising solutions in order to generate new solutions (Baluja, 1994; Mühlenbein and Paaß,
1996; Mühlenbein, 1997; Harik et al., 1998; Pelikan and Mühlenbein, 1999). In this paper,
we will focus on the second class of methods.

2.1 Evolving Representation or Operators

The goal of the first class of techniques based on manipulating the representation of solutions
in the algorithm is to make the interacting components of partial solutions less likely to
be broken by recombination operators. Various reordering and mapping operators were
used. However, reordering operators are often too slow and lose the race against selection,
resulting in premature convergence to low-quality solutions. Reordering is not sufficiently
powerful to ensure a proper mixing of partial solutions before these are lost.

This line of research has resulted in algorithms that evolve the representation of a prob-
lem along with the individual solutions. In the Messy Genetic Algorithm (mGA) (Goldberg
et al., 1989) and its more efficient descendant called the Fast Messy Genetic Algorithm
(fmGA) (Kargupta, 1995), the important building blocks are identified in the first phase.
This is done by simply applying the selection operator to them. The remaining solution
components are substituted from a special solution called the template. The template is
updated each few generations. In the second phase, the identified building blocks are mixed
using selection and crossover operators. In the Gene Expression Messy Genetic Algorithm
(GEMGA) (Kargupta, 1998), the interactions in a problem are identified by manipulating
individual solutions. These are used in order to improve the effects of recombination.

In the Linkage Learning Genetic Algorithm (LLGA) (Harik, 1997), the variables in
a problem are mapped onto a circle. Their mutual distances evolve during optimization,
grouping together the variables with strong interactions so that recombination is less likely
to disrupt them. The LLGA works very well for exponentially scaled decomposable prob-
lems, but it is not very efficient on problems with uniformly scaled building blocks.

2.2 Probabilistic Modeling of Promising Solutions

A different way to cope with the disruption of partial solutions is to change the basic principle
of recombination. In the second class of techniques, instead of implicit reproduction of
important building blocks and their mixing by selection and two-parent recombination
operators, new solutions are generated by using the information extracted from the entire
set of promising solutions.

Global information about the set of promising solutions can be used to estimate their
distribution and this estimate can be used to generate new individuals. A general scheme
of the algorithms based on this principle is called the Estimation of Distribution Algorithm
(EDA) (Mühlenbein and Paaß, 1996). However, estimating the distribution is not an easy
task. There is a trade-off between the accuracy of the estimation and its computational
cost. The next subsections describe basic principles of recently proposed algorithms that
use probabilistic models of promising solutions to guide the further search. For a more
detailed overview, see Pelikan et al. (1999).

Evolutionary Computation Volume 8, Number 3 313



www.manaraa.com

M. Pelikan, D. Goldberg, and E. Cantú-Paz

2.2.1 No Interactions

The simplest way to estimate the distribution of good solutions is to assume that the variables
in a problem are independent. New solutions can be generated by preserving only the
proportions of the values of all variables independently of the remaining solutions. This is
the basic principle of the Population Based Incremental Learning Algorithm (PBIL) (Baluja,
1994). In PBIL, a real vector is used instead of a population, and a simple incremental
rule is used to update this vector after performing the selection on generated candidate
solutions. The real vector, composed of univariate frequencies of values on different
positions, represents the population. The update rule gradually shifts the vector towards
the best of generated candidate solutions. The Compact Genetic Algorithm (cGA) (Harik
et al., 1998) uses the same distribution estimate. The population is represented by a real
vector. By using a different selection scheme and update rule than in PBIL, the connection
between the cGA and the simple GA becomes more transparent. In cGA, the order-one
behavior of the simple genetic algorithm with uniform crossover is approximated (Harik
et al., 1998). The Univariate Marginal Distribution Algorithm (UMDA) (Mühlenbein,
1997) uses the same distribution estimate, although it works with populations of solutions
instead of a vector representing these. There is theoretical evidence that the UMDA also
approximates the behavior of the simple GA with uniform crossover (Mühlenbein, 1997).
The theory of the UMDA is based on the techniques of quantitative genetics, and it can
be found in Mühlenbein (1997). Some analyses of PBIL can be found in Kvasnicka et al.
(1996).

The PBIL, cGA, and the UMDA algorithms work very well for problems with no
significant interactions among variables (Mühlenbein, 1997; Harik et al., 1998; Pelikan and
Mühlenbein, 1999). However, the partial solutions of order more than one are disrupted,
and therefore these algorithms experience great difficulty solving problems with interactions
among the variables.

2.2.2 Pairwise Interactions

The first attempts to solve this problem were the incremental algorithm using the so-called
dependency trees in order to estimate the distribution of selected solutions (we will refer to
this algorithm as Baluja ’97 (Baluja and Davies, 1997)) and the population-based Mutual-
Information-Maximizing Input Clustering Algorithm (MIMIC) using a simple chain distri-
bution with the same purpose (De Bonet et al., 1997). Another population-based attempt
to solve the problem of the disruption of building blocks of order two using different tech-
niques is the Bivariate Marginal Distribution Algorithm (BMDA) (Pelikan and Mühlenbein,
1999). The algorithms mentioned above are able to cover some pairwise interactions. The
reproduction of building blocks of order one is guaranteed. Moreover, the disruption of
some important building blocks of order two is prevented. Important building blocks of
order two are identified using various statistical methods. Mixing of building blocks of
order one and two is guaranteed, assuming the independence of the remaining groups of
variables.

However, covering only pairwise interactions has been shown to be insufficient to solve
problems with interactions of higher order efficiently (Pelikan and Mühlenbein, 1999).
Covering pairwise interactions still does not preserve the higher order partial solutions.
Moreover, interactions of higher order do not necessarily imply pairwise interactions that
can be detected at the level of partial solutions of order two.
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2.2.3 Multivariate Interactions

In the Factorized Distribution Algorithm (FDA) (Mühlenbein et al., 1998), a fixed factor-
ization of the distribution is used in order to generate new candidate solutions. The FDA is
capable of covering the interactions of higher order and combining important partial solu-
tions effectively. It works very well on uniformly-scaled additively decomposable problems.
The theory of the UMDA can be used in order to estimate the time to convergence in
the FDA. However, the FDA requires the prior information about a problem in the form
of a problem decomposition and its factorization. As input, this algorithm gets a com-
plete or approximate information about the structure of a problem. By providing sufficient
conditions for the distribution estimate that ensure fast and reliable convergence on decom-
posable problems, the FDA is of great theoretical value. Moreover, for problems where the
factorization of the distribution is known, this algorithm is a very powerful optimization
tool. Unfortunately, the exact factorization of the distribution is often not available without
computationally expensive problem analysis. Using an approximate distribution according
to the current state of information represented by the set of promising solutions can be very
effective even if it is not a valid distribution factorization.

In Harik’s Extended Compact Genetic Algorithm (ECGA) (Harik, 1999), the vari-
ables are grouped into disjoint sets so that by using the marginal distribution according to
these sets the population of selected solutions can be compressed as much as possible. As
a measure for quality of marginal distributions, the algorithm uses a combination of the
model complexity and compressed population complexity. The used measure corresponds
to a minimum description length approach in machine learning. To construct the desired
distribution, a simple greedy algorithm is used. The sets can be of any size and therefore
the ECGA can cover interactions of any order. The ECGA does not require the maximal
number of interactions that can be covered as input. However, by using marginal distri-
butions without any conditional probabilities, only problems with nonoverlapping building
blocks can be modeled accurately. The algorithm is not able to solve problems with highly
overlapping building blocks as spin-glasses without enormous computational effort.

The algorithm proposed in this paper is also capable of covering higher order inter-
actions. It uses techniques from modeling data by Bayesian networks in order to estimate
the joint distribution of promising solutions. This estimate is then used to generate new
candidate solutions. Besides the set of good solutions, prior information about the problem
can be used in order to enhance the estimation and subsequently improve convergence.
However, unlike the FDA, the proposed algorithm does not require any problem-specific
knowledge in the initial stage. It is able to learn the model on the fly. Because of using
a measure of quality of the networks that does not penalize more complex networks, only
networks of bounded complexity have been used in our experiments. The models were
bounded by a maximal order of probabilistic terms in the distribution estimate. We are
currently investigating the effect of using other metrics to discriminate networks according
to their accuracy as well as complexity.

In this paper, the solutions will be represented by binary strings of fixed length. How-
ever, the described techniques can be extended for strings over any finite alphabet.

3 General Estimation of Distribution Algorithm

In this section, we first describe a class of stochastic optimization algorithms based on the
estimation of distributions. Thereafter, a brief overview of the recent algorithms based on
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Table 1: A brief overview of EDAs.

Algorithm Capabilities Difficulties
PBIL, cGA, UMDA Efficient on linear problems. Higher order BBs.
MIMIC, Baluja ’97, BMDA Efficient with BBs of order 2. Higher order BBs.
FDA Efficient on decomp. prob. Prior inf. is essential.
ECGA Efficient on separable prob. Highly overlapping BBs

this principle will be presented.

In EDAs, the distribution of promising solutions is estimated and this estimate is used
to generate new candidate solutions. The distribution estimate represents the structure of
the selected solutions. The mechanics of the EDA are similar to those of the simple GA. The
first population of solutions (strings) is generated at random. From the current population,
the better strings are selected. The distribution of the selected strings is estimated. Using
this estimate, new strings are generated. The new strings are added into the old population,
replacing some of the old ones. The process is repeated until the termination criteria are
met. The two main questions to consider when designing an EDA are

� How to estimate the distribution of the selected strings?

� How to use this estimate in order to generate new strings?

The two questions above are strongly correlated—the distribution should be estimated
so that it is accurate and the generation of new strings can be performed effectively. There
is no simple and general solution to this problem that would work well. The more general
the distribution estimate, the more time consuming it is to find it, and the more it takes to
generate new points. EDAs differ in the way of estimating the distribution and using this
estimate for generation of new individuals.

A brief overview of the capabilities and difficulties of the discussed EDAs is provided
in Table 1.

4 The Bayesian Optimization Algorithm (BOA)

This section introduces an EDA that uses techniques from modeling data by Bayesian
networks to estimate the joint distribution of promising solutions. It is called the Bayesian
Optimization Algorithm (BOA). It covers both the UMDA and BMDA and extends them
to cover the interactions of higher order. The BOA is designed to solve problems that can
be decomposed into subproblems of bounded order.

The BOA uses the identical class of distributions as the FDA. However, unlike the FDA,
the algorithm does not require a valid distribution factorization as input. It is able to learn
the distribution on the fly without the use of any problem-specific information. Moreover,
information about the problem can be incorporated. Prior information about the structure
of a problem, as well as the information represented by the set of high-quality solutions, can
be used. The ratio between the amount of prior information and the information acquired
by the algorithm during the run can be controlled. The proposed algorithm fills the gap
between the fully-informed FDA and totally uninformed black-box optimization methods.
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The Bayesian Optimization Algorithm (BOA)

(1) set t 0
randomly generate initial population P (0)

(2) select a set of promising strings S(t) from P (t)

(3) construct the network B using a chosen metric and constraints

(4) generate a set of new strings O(t) according to the joint distribution encoded by B

(5) create a new population P (t+ 1) by replacing some strings from P (t) with O(t)
set t t+ 1

(6) if the termination criteria are not met, go to (2)

Figure 1: The pseudocode of the Bayesian optimization algorithm.

In the BOA, the first population of strings is generated at random. From the current
population, the better strings are selected. Any selection method can be used. A Bayesian
network that fits the selected set of strings is constructed. Any metric as a measure for
quality of networks and any search algorithm can be used to search over the networks in
order to maximize the value of the used metric. New strings are generated using the joint
distribution encoded by the constructed network. The new strings are added into the old
population, replacing some of the old ones. The pseudocode of the BOA can be found in
Figure 1.

Constructing the network in the BOA corresponds to estimating the distribution in
EDAs. Generating the set of new strings according to the distribution encoded by the
constructed network is identical to the corresponding step in EDAs. The following sec-
tion presents details on the algorithms for Bayesian network construction and its use for
generation of new instances (steps (3) and (4) in the pseudocode of the BOA).

5 Bayesian Networks Basics

This section describes basic techniques for learning Bayesian networks that have been used
in the experiments performed with the BOA in this paper and gives the pointers to other
works that discuss the topic in a more detailed way. For a more complete overview and
recent advances in modeling data by Bayesian networks, consult the cited papers.

The section starts with describing the structure of Bayesian networks and providing a
simple example of a Bayesian network and its semantics. Thereafter, some of the techniques
for learning Bayesian networks and the use of the constructed network for generating new
instances of modeled data are described.

5.1 General Description

Bayesian networks (Howard and Matheson, 1981; Pearl, 1988) are often used for modeling
multinomial data with both discrete and continuous variables. A Bayesian network encodes
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p(X) = p(X0):p(X1jX0):p(X2jX0; X1):p(X3jX1)

Figure 2: A simple example of a Bayesian network and the encoded joint distribution.

the probabilistic relationships between the variables contained in the modeled data. It
represents the structure of a problem. Bayesian networks can be used to describe the data
as well as to generate new instances of the variables with similar properties as those of given
data. Each node in the network corresponds to one variable. Both the variable and the node
corresponding to this variable will be denoted in this text by Xi. The relationship between
two variables is represented by an edge between the two corresponding nodes. The edges
in Bayesian networks can be either directed or undirected. In this paper, only Bayesian
networks represented by directed acyclic graphs will be considered. The modeled data sets
will be defined within discrete domains.

Mathematically, an acyclic Bayesian network with directed edges encodes a joint prob-
ability distribution. This can be written as

p(X) =

n�1Y
i=0

p(Xij�Xi
); (1)

where X = (X0; : : : ; Xn�1) is a vector of all the variables in the problem, �Xi
is the set of

parents of Xi in the network (the set of nodes from which there exists an edge to Xi), and
p(Xij�Xi

) is the conditional probability of Xi conditioned on the variables �Xi
. A directed

edge relates the variables so that in the encoded distribution, the variable corresponding to
its ending node will be conditioned on the variable corresponding to its starting node. More
incoming edges into a node result in a conditional probability of the corresponding variable
with conjunctional condition containing all its parents. A simple example of a Bayesian
network and the joint distribution encoded by this network can be found in Figure 2.

The network, i.e., the relationships between the variables, can be either known or
unknown. If the network is known, the joint distribution encoded by the network can be
used to generate new candidate solutions throughout whole optimization. If the network
is unknown, i.e., we don’t know which variables are correlated or there is some uncertainty
about that, the network has to be determined as well. The following sections address the
two important questions:

� How to determine the network that would serve as a good model for a given data set?
� How to use the network to generate new instances that would best match the given

data?
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Note that the two questions above directly correspond to the two questions arising
with the use of EDAs. Constructing the Bayesian network for a given set of promising
solutions corresponds to estimating their joint distribution. Generating new instances
according to the constructed network is, in fact, generating new solutions according to the
joint distribution encoded by this network.

5.2 Learning the Network Structure

There are two basic components of the algorithms for learning the network structure (Heck-
erman et al., 1994). The first is a scoring metric and the second is a search procedure. A
scoring metric is a measure of how well the network models the data. Prior knowledge
about the problem can be incorporated into the metric as well. A search procedure is used
to explore the space of all possible networks in order to find the one (or a set of networks)
with the highest possible value of the scoring metric. The number of considered net-
works can be reduced by imposing constraints on the network structure. Commonly used
constraints restrict the networks to have at most k incoming edges into each node. This
number directly influences the complexity of both the network construction and its use for
generation of new instances. It corresponds to a maximal order of probabilistic terms that
can be used in a considered class of distributions or to a maximal order of interactions that
can be covered. However, it is not an easy task to determine the value of k that would be
sufficient to model given data well and yet be as small as possible to make the construction
of a network and generation of new solutions more efficient. Nevertheless, by preferring
simpler networks, the use of this constraint can be evaded without a significant increase
in a model complexity. We are currently investigating various ways to eliminate a fixed k
without increasing time-to-convergence on decomposable problems.

In the following sections, the Bayesian Dirichlet metric and search algorithms that
can be used to search over the networks are described and their complexity analyses are
provided.

5.2.1 Bayesian Dirichlet Metric

The Bayesian Dirichlet (BD) metric (Heckerman et al., 1994) can be used as a measure
of the quality of networks. It combines the prior knowledge about the problem and the
statistical data from a given data set.

The BD metric for a network B given a data set D and the background information �
is denoted by p(D;Bj�) and defined as

p(D;Bj�) = p(Bj�)
n�1Y
i=0

Y
�X

i

� (m0(�Xi
))

� (m0(�Xi
) +m(�Xi

))

Y
xi

� (m0(xi; �Xi
) +m(xi; �Xi

))

� (m0(xi; �Xi
))

;

(2)

where p(Bj�) is the prior probability of the network B, � function is defined as �(a) =
(a� 1)!, the product over �Xi

runs over all instances of the parents of Xi, and the product
over xi runs over all instances of Xi. m(�Xi

) denotes the number of instances in D with
variables �Xi

(the parents of Xi) instantiated to �Xi
. When the set �Xi

is empty, there is
one instance 0 of �Xi

, and the number of instances with �Xi
instantiated to this instance is

set to N , i.e., the size of the data set D. We denote by m(xi; �Xi
) the number of instances

in D that have both Xi set to xi as well as �Xi
set to �Xi

. It is easy to see that for all
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instances �Xi
of the parents of Xi,

m(�Xi
) =

X
xi

m(xi; �Xi
); (3)

where the sum runs over all instances of Xi.

By numbers m0(xi; �Xi
) and p(Bj�), prior information about the problem is incor-

porated into the metric. The prior probability of the network reflects how the measured
network resembles the prior network. By using a prior network, the prior information
about the structure of a problem is incorporated into the metric. The prior network can
be set to an empty network when there is no such information. The m0(xi; �Xi

) stands for
a prior information about the number of instances that have variable Xi set to xi, and the
set of variables �Xi

is instantiated to �Xi
. An analogical relation as for m in Equation 3 is

satisfied for m0 as well.

The prior probability of a network can be computed in a number of ways. Heckerman
et al. (1994) suggest a simple assignment by the following formula:

p(Bj�) = c��; (4)

where c is a normalization constant, � 2 (0; 1] is a constant factor penalizing the network
for each unmatched edge with the prior network, and � is the symmetric difference between
B and the prior network. The symmetric difference between two networks is the number
of edges where the networks differ. The bias of the metric to the prior network can be
controlled by parameter �. For � = 1, all networks are treated equally. The smaller the �,
the stronger the networks are penalized for each missing or extra edge with respect to the
prior network. In order to favor networks of lower complexity by the BD metric, an empty
prior network can be used (Heckerman et al., 1994), or the prior probability of the network
can be set to two to the power of the defining length of the network (i.e., a maximal number
that can be encoded using a number of bits needed to encode the network (see Friedman
and Goldszmidt (1999)).

The numbers m0(xi; �Xi
) can be set in various ways. They can be set according to

the prior information the user has about the problem. When there is no prior information,
uninformative assignments can be used. In the K2 metric, for instance, the m0(xi; �Xi

)
coefficients are all simply set to 1 (Heckerman et al., 1994). This assignment corresponds
to having no prior information about the problem. Other possibilities for setting the
m0(xi; �Xi

) priors include Buntine’s uninformative assignment (Buntine, 1991) or a more
sophisticated assignment of priors used in the BDe metric (Heckerman et al., 1994). For
more about the assignment of uninformative priors, see Heckerman et al. (1994) or the
discussion in Bernardo and Smith (1994). In our BOA, any of the mentioned assignments
of priors can be used. In the empirical part of this paper, we will use the K2 metric, and
all networks will be treated equally. The reason for this is that before investigating the
numerous possibilities arising with various sources of prior information, a general principle
of the algorithm should be tested.

A simple example of a data set and the obtained score with the K2 metric andp(Bj�) = 1
for all networks B (all networks are treated equally) for two different networks follows.

EXAMPLE 5.1 (K2 Metric): Let us have two variablesX0 andX1 and the set of their instances
D = f00; 00; 00; 11g, where the first position corresponds to X0 and the second one to X1.
First, let us compute the value of the K2 metric for a network Bempty with no edges. In
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the K2 metric, the m0(xi; �Xi
) are set to 1. Thus, using an analogy of the relation from

Equation 3, the m0(�Xi
) are set to 2. The table with values of the terms from Equation 2

follows:

i xi �Xi
m(xi; �Xi

)

0 0 0 3
0 1 0 1
1 0 0 3
1 1 0 1

The remaining terms can be computed using Equation 3. Thus,

p(Bempty ; Dj�) =
(2� 1)!

(2 + 4� 1)!
� (1 + 3� 1)!

(1� 1)!
� (1 + 1� 1)!

(1� 1)!
� (2� 1)!

(2 + 4� 1)!
�

� (1 + 3� 1)!

(1� 1)!
� (1 + 1� 1)!

(1� 1)!
=

1

400
�

For a network B0!1 containing an edge from X0 to X1, the m0(xi; �Xi
) are again set to 1

and m0(�Xi
) are set to 2. The table with values of the terms from Equation 2 follows:

i xi �Xi
m(xi; �Xi

)

0 0 0 3
0 1 0 1
1 0 0 3
1 0 1 0
1 1 0 0
1 1 1 1

The remaining terms can be computed again using Equation 3. Thus,

p(B0!1; Dj�) =
(2� 1)!

(2 + 4� 1)!
� (1 + 3� 1)!

(1� 1)!
� (1 + 1� 1)!

(1� 1)!
� (2� 1)!

(2 + 3� 1)!
� (1 + 3� 1)!

(1� 1)!
�

� (1 + 0� 1)!

(1� 1)!
� (2� 1)!

(2 + 1� 1)!
� (1 + 1� 1)!

(1� 1)!
� (1� 1)!

(1� 1)!
=

1

160
�

We would get the same result with an edge from X1 to X0. Thus, the networks with
connected nodes get a higher score than the network with no edges. This result is not
surprising. The positions (variables) are clearly correlated in the set D. Each of them
determines the value of the other one. 2

In the previous example, the value of the K2 metric remained the same after reversing
an edge. This is not the case, in general. Reversing any path among the nodes with
the same parents would not affect the BDe metric. This property is called the likelihood
equivalence (Heckerman et al., 1994). However, even this condition is not satisfied for other
mentioned metrics (e.g., K2 metric, see Heckerman et al. (1994)). All of the mentioned
metrics derived from the BD metric are consistent with the assumptions of multinomial
sample, parameter independence, parameter modularity, Dirichlet assumption, and the
assumption of complete data. In addition, the BDe metric is consistent with the likelihood
equivalence assumption.
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Since the factorials in Equation 2 can grow to huge numbers, usually a logarithm of
the scoring metric is used. Using simple logarithmic rules we get

log

�
(m0(�Xi

)� 1)!

(m0(�Xi
) +m(�Xi

)� 1)!

�
= �

m0(�X
i
)+m(�X

i
)�1X

s=m0(�X
i
)

log s; (5)

and, similarly,

log

�
(m0(xi; �Xi

) +m(xi; �Xi
)� 1)!

(m0(xi; �Xi
)� 1)!

�
=

m0(xi;�X
i
)+m(xi;�X

i
)�1X

t=m0(xi;�X
i
)

log t: (6)

Thus,

log (p(D;Bj�)) = log (p(Bj�)) +
n�1X
i=0

X
�X

i

0
@�

m0(�X
i
)+m(�X

i
)�1X

s=m0(�X
i
)

log s +

+
X
xi

m0(xi;�X
i
)+m(xi;�X

i
)�1X

t=m0(xi;�X
i
)

log t

1
A :

(7)

With binary variables, there are maximally 2k instances of the parents of any node. The
marginal probabilities for the variables corresponding to one node and its parents can be
computed in O(kN + 2k) steps, where N is the size of a data set (the number of given
instances of all variables) and k is a maximal number of incoming edges into each node in
the network. The computation of the sums from Equations 5 and 6 can be done in O(N)
steps. Thus, the computation of all terms needed to compute the contribution of one node
into the logarithm of the metric can be done in O(kN +2k) steps. The contribution of one
node to the logarithm of the metric can then be computed in O(2kN) steps. To compute
an increase of the logarithm of the value of the BD metric for an edge addition, edge
reversal, or edge removal, we need O(2kN) steps, because the contribution corresponding
to a particular node changes only when its set of parents is changed. Assuming that k is
constant, we get a linear time complexity O(N) with respect to the size of the data set of
both the computation of the contribution of one node to the overall value of the metric, as
well as the computation of an increase of the logarithm of the metric for an edge addition,
edge removal, or edge reversal.

BMDA uses a simple metric defined as the sum of the values of Pearson’s chi-square
statistic for independence for the pairs of variables that are connected in the network (Pelikan
and Mühlenbein, 1999). Only the pairs that are not independent at 5% confidence level
with respect to this statistic are considered. The metric used in the BMDA gives preference
to networks that cover pairwise interactions in a given data set. However, the interactions
of higher order do not necessarily imply pairwise correlations that can be detected with
probabilistic terms of order two (see Example 5.2). The BD metric is able to give preference
to networks that cover correlations of a higher order, too. Experiments show that the BOA
can even efficiently solve problems where higher order interactions are present, although
the variables are not statistically strongly correlated at the level of probabilistic terms of
length.
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EXAMPLE 5.2 (Pairwise vs. Higher Order Interactions): A simple example of a data set where
the interactions of higher order do not imply correlations identifiable with the probabilistic
terms of order two might be the set D = f000; 011; 101; 110g. In this set, each pair of
positions seems to be independent. However, the strings are not uniformly distributed with
proportions of 50% of ones on each position, and therefore the variables (corresponding to
the positions in strings) are not mutually independent. In spite of this, the metric used in
BMDA gives the same score 0 to all networks for D. 2

5.2.2 Searching for a Good Network

In this section, the basic principles of algorithms that can be used for searching over the
networks in order to maximize the value of a scoring metric are described. Only the classes
of networks with a restricted number of incoming edges denoted by k will be considered.
We consider the following 3 cases:

a) k = 0 This case is trivial. An empty network is the best one (and the only one
possible).

b) k = 1 To compute an increase in the score of a network with at most one incoming
edge into each node, only a constant time is required. All components of the BD metric
are composed of univariate and bivariate frequencies, and these can be precomputed
in O(n2N) steps. The metric can be written as the sum of the contributions of all
edges. Each edge can be weighted by the increase in the value of the metric in case of
its addition (Heckerman et al., 1994). Finding the best network with k = 1 simplifies
to a special case of the maximal branching problem. To solve this problem, there exists
a polynomial algorithm (Edmonds, 1967).

c) k > 1 For k > 1 the problem becomes more complicated. Although for k = 1 there
exists a polynomial algorithm for finding the best network, for k > 1, the problem of
determining the best network with respect to a given score metric is NP-complete for
most Bayesian and non-Bayesian metrics (Heckerman et al., 1994; Chickering et al.,
1994).

Various algorithms can be used in order to find a good network, from a total enumera-
tion to a blind random search. Usually, due to their effectiveness in this context, simple local
search-based methods are used (Heckerman et al., 1994). A simple greedy algorithm, local
hill-climbing, or simulated annealing can be used. Simple operations that can be performed
on a network include an edge addition, edge reversal, and edge removal.

In the empirical part of this paper, we have used a simple greedy algorithm with only
edge additions allowed. Starting with an empty network, improvement of the network for
all edge additions is measured by an increase of the metric value. Only edge additions that
keep the network acyclic and do not violate network complexity constraints are allowed.
If no legal additions improve the network, the algorithm finishes and returns the current
network. Otherwise, the addition that most improves the network score is performed, and
the process is repeated until termination criteria are finally met.

Edge reversals and removals can be allowed in the greedy search as well. However,
our experience suggests that introducing these operators does not significantly improve
learning. The pseudocode of a greedy algorithm for constructing the Bayesian network is
shown in Figure 3.
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A greedy algorithm for the network construction

(1) initialize the network B (e.g., to an empty network)

(2) choose all simple graph operations that can be performed on the network without
violating the constraints

(3) pick the operation that increases the score of the network the most

(4) perform the operation picked in the previous step

(5) if the network can no longer be improved under given constraints on its complexity
or a maximal number of interactions has been reached, finish

(6) go to 2

Figure 3: The pseudocode of the greedy algorithm for the network construction.

The time complexity of the greedy learning algorithm we used in the experiments
presented in this paper can be computed using the time complexity of a simple edge
addition and the greatest number of edges to be processed. First, the univariate and
bivariate frequencies have to be calculated and used to compute the increase in the score
of a metric for all edge additions into an empty graph. As in the algorithm for k = 1,
this requires O(n2N) steps. Picking the best edge to add can be done in O(n2) steps since
there are maximally n2 edges to add. To recompute the gains for the edge additions after
performing a particular edge addition, the computational time depends on the used metric.
For the BD metric, the increases can be recomputed in O(2knN). Adding an edge into the
network and updating the information needed to keep the network acyclic and consistent
with the constraint on the maximal number of incoming edges can be done in O(n2) steps.
With k incoming edges into each node at maximum, at most (k:n) edges can be added
into any network. The overall time to construct the network using the described greedy
algorithm with the BD metric is then O(k2kn2N + kn3). Assuming that k is constant, we
get the overall time complexity O(n2N + n3).

A similar algorithm can be used for constructing the network under different con-
straints. Only operations that do not violate the constraints can be allowed, and the time
complexity can be computed in the same way as the maximal incoming edges constraint.
Allowing other operations (e.g., an edge reversal or removal) would make the analyses more
complicated.

The algorithm for constructing the networks does not depend on how the networks
are discriminated by the used metric. It simply uses a given metric to guide its search.
The BOA does not restrict the networks to be learned by a greedy algorithm. More robust
techniques (e.g., simulated annealing, evolutionary programming, etc.) can be used.

5.3 Generating New Instances

In this section, the generation of new instances using a networkB and the marginal frequen-
cies for a few sets of variables in the modeled data set will be described. This corresponds
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The algorithm for the generation of a new instance

(1) mark all variables as unprocessed

(2) pick up an unprocessed variable Xi with all parents processed already

(3) set Xi to xi with probability p(Xi = xij�Xi
= �Xi

)

(4) mark Xi as already processed

(5) if there are unprocessed variables left, go to (2)

Figure 4: The pseudocode of the algorithm for generating a new instance given the network
and the set of conditional probabilities from the corresponding joint distribution.

to step (4) in the pseudocode of the BOA (see Figure 1). The network B encodes a joint
probability distribution given by Equation 1. The conditional probabilities present in this
distribution are given by

p(Xij�Xi
) =

p(Xi;�Xi
)

p(�Xi
)

(8)

for all i 2 f0; : : : ; n� 1g.
Since the network B is acyclic, it is easy to generate a new instance. First, the

conditional probabilities of each possible instance of each variable, given all instances of its
parents in a given data set, are computed. The conditional probabilities are used to generate
each new instance. Each iteration, the values of the variables whose parents are already
fixed are generated using the corresponding conditional probabilities. This is repeated
until the values for all variables are generated. Since the network is acyclic, it is easy to
see that the algorithm is defined well. It is similar to the forward simulation in Bayesian
networks (Henrion, 1988). A more detailed description of the algorithm for generating a
new instance can be found in Figure 4.

The time complexity of generating the value for each variable is O(k), where k is a
maximal number of incoming edges in the network. The time complexity of generating
an instance of all variables is then bounded by O(kn), where n is the number of variables.
Assuming the k is constant, the overall time complexity is O(n), i.e., the complexity of
generating each new instance grows linearly with the problem size.

The overall complexity of constructing the network and generating the new instances
according to this network is therefore O(k2kn2N + kn3), and assuming that k is constant,
we get the overall time complexityO(n2N+n3). This process is performed each generation
of the BOA. Using a different metric or a search procedure for the network construction,
the time complexity analysis would also change.
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6 Additively Decomposable Functions, the Interactions, and What is Hard
for Simple GAs

In this section, the class of additively decomposable functions is defined. The problems
defined by this class of functions can be decomposed into smaller subproblems. Although by
combining partial solutions it is possible to get a global solution, the simple GAs experience
great difficulty solving some decomposable problems. This topic is addressed in this section
as well. However, to precisely define what is difficult for the GAs as well as other methods
is not an easy task.

Let us start with a simple definition of an order-k decomposable function (problem).
We say that a function f from the vector of n variables to real numbers is order-k additively
decomposable if there exists a set of l functions fi over subsets of variables Si for i =
0; : : : ; l� 1, each of the size at most k, for which the following equation is satisfied over the
domain of f :

f(X) =

l�1X
i=0

fi(Si); (9)

where X is the vector of variables. In other words, the function is order-k (additively)
decomposable, if we can write it as the sum of simpler functions, each over at most k
variables from the original domain of the function f .

First, let us consider the functions that can be decomposed by using only nonoverlap-
ping sets of variables Si, i.e., the functions for which there exists a set of disjoint sets Si,
each of at most k variables, and a function fi for each Si, so that Equation 9 is satisfied.
With discrete variables with finite domain, these functions can be optimized in time linearly
proportional to the size of a problem (a total number of variables). Since the subsets Si are
nonoverlapping, each subfunction can be considered independently. The optimum can be
obtained by simply optimizing each of the subfunctions fi by enumeration. With binary
variables, the time complexity of the enumeration of one of the subfunctions is O(2k). For
disjoint sets Si, the number of subfunctions is upper-bounded by n. Thus, the overall time
complexity is O(2kn). Assuming that k is constant, we get linear overall time complexity
O(n). Therefore, if the structure of this function is known, it is numerically very easy to
optimize it.

The subfunctions fi can be constructed so that the problem is hard for the simple
GA. This can be done by using fully deceptive subfunctions (Deb and Goldberg, 1994) for
which all the schemata of order less than k mislead the algorithm away from the global
optimum into a local one. Important building blocks tend to vanish if they are disrupted.
The performance of the simple GA for these problems crucially depends on the mapping
of variables onto the strings. For a mapping that puts the variables from the same subset
close to each other on the string, the deceptiveness of the building blocks does not mean
a significant increase in the problem difficulty in terms of population sizing or the number
of function evaluations until convergence in order to achieve the solution of a particular
quality (Thierens and Goldberg, 1993). The relation between the number of building
blocks and the population size remains qualitatively the same. However, when the mapping
spreads the variables from the same set throughout the whole string, the population sizes for
the simple GA have to grow exponentially with the problem size and so does the required
number of fitness evaluations in order to obtain the solution of a particular quality (Thierens
and Goldberg, 1993).
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For the functions that can be decomposed into subfunctions of order at most k, but
the corresponding domains overlap, the problem becomes much more complicated even if
the structure of the problem is known. In general, we cannot consider each subfunction
independently, optimize it, and get the global optimum by combining the partial solutions
together as with nonoverlapping sets. The global optima of two overlapping sets of variables
can differ in some of the values from their intersection. Therefore, these sets cannot be
considered independently. A possible solution to this problem is the FDA (Mühlenbein and
Mahnig, 1998), which is able to combine important building blocks together even if they
are overlapping. However, the FDA needs as input an exact or an approximate factorization
of a problem, and without this information it is not applicable.

However, by scaling function values corresponding to the overlapping sets of variables
according to some function of a problem size, deceptive building blocks of order growing
with the size of a problem can be created. For such problems, the exponential complexity
of solving these problems cannot be avoided by any of the mentioned algorithms based on
the concepts of reproducing and mixing promising building blocks according to a prob-
lem decomposition. An example of such function was presented by Mühlenbein et al.
(1998) (here, see Equation 23 in Section 7.2), where the FDA is applied to solve the prob-
lem. According to the presented results, the number of fitness evaluations until successful
convergence grows faster than exponentially, even with the FDA, which uses an exact prob-
lem factorization (requiring complete information about problem decomposition) to solve
this problem. This implies that even a valid problem factorization does not guarantee that
the corresponding decomposable problem can be solved in polynomial time. The reasons
why this is the case are presented in Section 7.2. The problem can only be avoided by
generating the initial population according to a distribution factorization instead of using
a uniform distribution. However, given no prior information about the problem, this is
impossible. The connection between the order of problem decomposition and the order of
building blocks that need to be considered is far from trivial. Only for separable problems,
where the set of all the variables in a problem is decomposed into nonoverlapping subsets
of variables, is the order of building blocks that need to be considered equal to the order of
problem decomposition.

7 Experiments

The experiments were done for decomposable problems composed of functions of unitation
and a highly overlapping two-dimensional Ising spin-glass problem instance. For all prob-
lems except the Ising spin-glass, the scalability of the proposed algorithm was shown. The
following sections describe the optimized functions and present results of the experiments.

7.1 Functions of Unitation

A function of unitation is a function whose value depends only on the number of ones in an
input string. The function values for the strings with the same number of ones are equal.

A simple OneMax function of order 1 is defined for a single bit as its value, i.e.,

f1onemax(X) = X; (10)

where X is a binary variable.
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A deceptive function of order 3 is defined as

f3deceptive(X) =

8>><
>>:

0:9 if u = 0
0:8 if u = 1
0 if u = 2
1 otherwise;

(11)

where X is a vector of 3 binary variables, and u is the sum of the input variables.

A trap function of order 5 is defined as

f5trap(X) =

�
4� u if u < 5
5 otherwise; (12)

where X is a vector of 5 binary variables, and u is the sum of the input variables.

A bipolar deceptive function of order 6 is defined with the use of the 3-deceptive
function as follows

f6bipolar(X) = f3deceptive(j3� uj); (13)

where X is a vector of 6 binary variables, and u is the sum of the input variables.

Following, functions of order 3 will be used in the 0-peak function. The first function
will be denoted by f1. It is defined as

f31 (X; l) =

8<
:

l if u = 0
l � 1 if u = 3
0 otherwise;

(14)

where X is a vector of 3 binary variables, u is the sum of the input variables, and l is an
integer. The second function used in the 0-peak will be denoted by f2, and it is defined as

f32 (X; l) =

�
l if u = 3
0 otherwise; (15)

where X is a vector of 3 variables, u is the sum of the input variables, and l is an integer.

7.2 Test Functions

In this section, the functions used in experiments will be described. All functions except
the 2-dimensional Ising spin-glass function are constructed with functions of unitation
presented in the previous section.

Several functions of unitation can be additively composed in order to form a more
complex function. Let us have a function of unitation fk defined for strings of length k.
Then, the function additively composed of l functions fk is defined as

f(X) =

l�1X
i=0

fk(Si); (16)

where X is the set of n variables, and Si for i 2 f0; : : : ; l�1g are subsets of k variables from
X . Sets Si can be either overlapping or nonoverlapping, and they can be mapped onto a
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string (the inner representation of a solution) so that the variables from one set are either
mapped close to each other or spread throughout the whole string. A function composed in
this fashion is clearly additively decomposable of order of the subfunctions used to construct
the function. Each variable will be required to contribute to the function through some of
the subfunction, i.e.,

X =

l�1[
i=0

Si (17)

The OneMax function returns the number of ones in an input string, i.e.,

fonemax(X) =

n�1X
i=0

f1onemax(Xi); (18)

where X = (X0; : : : ; Xn�1) is a vector of variables. OneMax is a unimodal function with
optimum in Xopt = (1; : : : ; 1). There are no interactions in a problem, and therefore k = 0
is sufficient for the BOA in order to find the distribution that guarantees fast and reliable
convergence.

A deceptive function composed of nonoverlapping deceptive functions of order 3 (see
Equation 11) will be referred to as 3-deceptive without overlapping. It is defined as

f3deceptive(X) =

n=3�1X
i=0

f3deceptive(Si); (19)

where X = (X0; : : : ; Xn�1) is a vector of variables, and Si = (X3i; X3i+1; X3i+2). This
function has one global optimum in Xopt = (1; 1; : : : ; 1). For this problem, probabilistic
terms of length 3 are needed in order to cover all interactions. Therefore, k = 2 is sufficient.

A deceptive function composed of deceptive functions of order 3 that are overlapping
in one variable in a chain-like structure will be referred to as 3-deceptive with overlapping.
It is defined as follows:

f3dec�overlap(X) =

(n�3)=2X
i=0

f3deceptive(Si); (20)

where X = (X0; : : : ; Xn�1) is a vector of variables, and Si = (X2i; X2i+1; X2i+2). This
function has one global optimum in Xopt = (1; 1; : : : ; 1). Analogically to the previous
problem, k = 2 is sufficient in order to model the selected strings well.

A trap function composed of nonoverlapping trap functions of order 5 will be referred
to as trap-5. It is defined as

ftrap5(X) =

n=5�1X
i=0

f5trap(Si): (21)

X = (X0; : : : ; Xn�1) and Si = (X5i; X5i+1; X5i+2; X5i+3; X5i+4); where X is a vector
of variables. This function has one global optimum in Xopt = (1; : : : ; 1). Probabilistic
terms of length 5 are needed to cover the interactions in this problem. Therefore, k = 4 is
sufficient.
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A bipolar function composed of nonoverlapping bipolar functions of order 6 will be
referred to as 6-bipolar. It is defined as

f6bipolar(X) =

n=6�1X
i=0

f6bipolar(Si): (22)

X = (X0; : : : ; Xn�1) and Si = (X6i; X6i+1; X6i+2; X6i+3; X6i+4; X6i+5), where X is a
vector of variables. This function has 2n6 global optima in all strings that have blocks of bits
corresponding to each set Si set to either (0; : : : ; 0) or (1; : : : ; 1). The 6-bipolar function
is highly multimodal. It has

�
6

3

�n
6 local optima besides 2

n

6 global ones. Therefore, for a
problem size of n = 120, there are only something more than 106 global optima, but more
than 1026 places to get stuck. To cover the interactions in this problem, the probabilistic
terms of order 6 are required. Therefore, k = 5 is sufficient.

A 0-peak function composed of functions f31 and f32 is defined as

f0�peak(X) =

l�2X
i=0

f31 (Si) + f32 (Sl�1); (23)

where X = (X0; : : : ; Xn�1) is a vector of variables, Si = (X2i; X2i+1; X2i+2), and l =
(n � 1)=2. This function is very difficult to optimize. It has one global optimum in
Xopt = (1; : : : ; 1) with function value f0�peak(Xopt) = l(l � 1) + 1. The second best
optimum is in X2nd = (0; : : : ; 0), i.e., in exactly opposite point, although the function
value is only 1 less than the optimal function value, i.e., f0�peak(X2nd) = l(l � 1). All
schemata of order (n � 3) with “don’t care” positions in one of the sets from the function
decomposition are deceiving the algorithm from the global optima into the local one for
l > 21. For instance, the average fitness of schema ***000...0 is higher than the average
fitness of ***111...1. The same condition is satisfied for schemata of lower order. This
closely resembles the definition of fully deceptive functions. Moreover, the larger the
problem, the stronger the deception. Using an algorithm that reproduces and mixes the
building blocks of order 3 according to the function decomposition, wrong schemata 000
are reproduced and mixed for all but the last building block in the chromosome. In fact,
the building blocks in this problem are not really of order 3 as would intuitively follow
from the problem definition, but they are growing linearly with the problem size. Since
they are also deceptive, the algorithms that take into account only blocks of bits of order 3
are deceived for the same reasons as the UMDA would be deceived for deceptive building
blocks growing with the problem size. These are the main reasons why 0-peak is very
difficult to optimize and the algorithms based on using only partial information from a
relatively small and inaccurate set of promising solutions require exponential time to find a
global optimum. Mostly, the algorithms are misled, and only after finding the optimum by
chance do they further reproduce it.

For the above reasons, although the problem decomposition looks similar to that of the
3-deceptive function with overlapping, to solve this problem, a processing of much higher
order building blocks is necessary. The order of building blocks that need to be taken into
account is growing linearly with the problem size. To ensure the building block supply in
the initial population, the required population sizes need to grow exponentially with the
problem size. However, we test this problem for k = 2, therefore, covering interactions of
order 3 at maximum. The results confirm the above analysis.
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An Ising spin-glass function is defined as

fIsing(X) =
n�1X
i=0

X
j2N(i)

YiJi;jYj ; (24)

where X = (X0; : : : ; Xn�1) is a binary vector, Y = (Y0; : : : ; Yn�1) is transformation of the
vector X such that Yi = �1 for Xi = 0 and Yi = +1 for Xi = 1, J = (Ji;j)

n2�1
i;j=0 is a fixed

matrix of coefficients from f�1; 1g, and the sum over j runs over the neighbors of i. In
our 2-dimensional problem, the neighbors of the variable Xi were defined as the adjacent
variables when the input vector is sequentially filled in a 2-D grid of the size

p
n�pn. In a

general Ising spin-glass instance, coefficients Ji;j are real numbers from [�1; 1]. However,
in our experiments, we have used a simple instance with discrete coefficients since, for this
problem, there exists a polynomial algorithm for finding the optimum (Toulouse, 1977),
and therefore the results can be easily verified. Since the Ising spin-glass problem is a
minimization problem, we will first transform the coefficient to exactly opposite values,
i.e., Ji;j := �Ji;j , so that the problem transforms to maximization. In order to accurately
model the problem, probability terms growing with a square root of problem size would
be required. However, allowing each node in the grid to interact with two neighbors is
sufficient for the algorithm to converge efficiently. Therefore, in our experiments, we set
k = 2.

7.3 Results of the Experiments

For all problems, the average number of fitness evaluations until convergence in 30 inde-
pendent runs is shown. For OneMax, 3-deceptive, and trap-5 functions, the population
is said to have converged when the proportion of some value on each position reaches
95%. This criterion of convergence is applicable only for problems with at most one global
optimum and selection schemes that do not force the algorithm to preserve the diversity in
population (e.g., niching methods). For the 6-bipolar and 2-D Ising spin-glass functions,
the population is said to have converged when there is over a half of optimal solutions there.
For all algorithms, the population size for all problems and all problem sizes was determined
empirically as a minimal size so that the algorithms converged to the optimum in all of 30
independent runs. In all runs, truncation selection with � = 50% was used (the better
half of individuals was selected). Offspring replace the worse half of the old population.
The crossover and mutation rate for the simple GA were empirically determined for each
problem with one problem instance. In the simple GA, the best results were achieved with
the probability of crossover 100%. The probability of flipping a single bit by mutation
was set to 1%. In the BOA, no prior information except for a maximal order of covered
interactions was incorporated into the algorithm. All networks were treated equally (the �
parameter from Equation 4 was set to 1).

In Figure 5, the results for OneMax function are shown. Since for k = 0, the BOA
uses identical distribution estimate as the UMDA, the corresponding results were adopted
from Pelikan and Mühlenbein (1999). The results for the simple GA with both types of
crossover were obtained from the same source. Since the OneMax is linear and, therefore,
there are no interactions among genes, the BOA with k = 0 performs the best in terms
of the number of function evaluations until successful convergence. The simple GA with
uniform crossover performs slightly worse than the BOA with k = 0. The simple GA
with one-point crossover performs similarly to the BOA with k = 1. Both the GA with
one-point crossover and the BOA with k = 1 perform worse than the BOA with k = 0
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Figure 5: Results for OneMax.

and the simple GA with uniform crossover. This is caused by slower mixing. However, the
differences between the performance of all compared algorithms are not significant. All
algorithms appear to converge in linear time. The population sizes for the BOA ranged
from N = 50 for n = 30 to N = 170 for n = 180 with k = 0 and from N = 120 for n = 30
to N = 330 for n = 180 for k = 1. The population sizes with the simple GA with uniform
crossover ranged from N = 32 for n = 30 to N = 160 for n = 180. The population sizes
for the simple GA with one-point crossover ranged from N = 32 for n = 30 to N = 100
for n = 180.

In Figure 6, the results for 3-deceptive function without overlapping are presented.
In this function, the deceptive building blocks are of order 3. The building blocks are
nonoverlapping and mapped tightly onto strings. Therefore, one-point crossover is less
likely to disrupt them. The looser the building blocks would be, the worse the simple
GA would perform. Eventually, for the building blocks randomly spread throughout the
solution strings, the simple GA with one-point crossover would require exponential time.
Since the building blocks are deceptive, the computational requirements of the simple GA
with uniform crossover and the BOA with k = 0 (i.e., the UMDA) grow exponentially, and
therefore we do not present the results for these algorithms. Some results for BMDA can be
found in Pelikan and Mühlenbein (1999). The BOA with k = 2 and the K2 metric performs
the best of the compared algorithms in terms of the number of function evaluations until
successful convergence. It converges to the global optimum in linear time with respect to
the size of the problem. The simple GA with one-point crossover performs worse than the
BOA with k = 2 as the problem size grows. For loose building blocks, the simple GA with
one-point crossover would require the number of fitness evaluations growing exponentially
with the size of a problem (Thierens, 1995). On the other hand, the BOA (with any
configuration) would perform the same since it is independent of the variable ordering in
a string. The population sizes for the simple GA ranged from N = 400 for n = 30 to
N = 7700 for n = 180. For the BOA, the population sizes ranged from N = 1000 for
n = 30 to N = 7700 for n = 180.

In Figure 7, the results for 3-deceptive function with overlapping building blocks are
presented. The building blocks are tightly mapped to strings representing the solutions.
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Figure 6: Results for 3-deceptive without
overlapping.
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Figure 7: Results for 3-deceptive with over-
lapping.

Again, as with the same function with nonoverlapping building blocks, the BOA algorithm
converges to the global optimum in close to linear time, while as the problem size grows,
the simple GA requires qualitatively more computational time with respect to the number
of fitness evaluations. Since the number of building blocks in the 3-deceptive function with
overlapping grows 50% faster than in the same function without overlapping, the results
also suggest that, with respect to the number of building blocks in a problem, the BOA is
able to solve some of the problems with overlapping building blocks without scaling as fast
as it can solve similar problems without overlapping. The population sizes for the simple
GA ranged from N = 900 for n = 31 to N = 11900 for n = 181. For the BOA, the
population sizes ranged from N = 2100 for n = 31 to N = 12300 for n = 181.

In Figure 8, the results for the trap-5 function with nonoverlapping building blocks are
presented. The building blocks are nonoverlapping and they are again mapped tightly onto
a string. Therefore, the interacting variables are located close to each other in a string, and
the building blocks are less likely to be disrupted by one-point crossover. The results for this
function are similar as the results for the 3-deceptive function without overlapping. The
BOA converges to the global optimum in almost linear time with respect to the problem
size. The population sizes for the simple GA ranged from N = 600 for n = 30 to N = 8100
for n = 180. The population sizes for the BOA with the K2 metric ranged from N = 1300
for n = 30 to N = 11800 for n = 180.

In Figure 9, the results for a 6-bipolar function are presented. For smaller problems,
the simple GA with one-point crossover performs better than the BOA with k = 5. As
the problem size grows, the BOA outperforms the simple GA. The BOA converges to the
global optima in time linearly proportional to the problem size. In addition to the faster
convergence with the BOA for larger problems, the BOA algorithm discovers a number of
solutions out of totally 2

n

6 global optima of the 6-bipolar function instead of converging
into a single solution. This effect could be further magnified by using niching methods.
The population sizes for the simple GA ranged from N = 360 for n = 30 to N = 4800 for
n = 180. The population sizes for the BOA ranged from N = 900 for n = 30 to N = 5000
for n = 180.

On the 0 � peak function, the algorithm performs significantly worse than on the
remaining problems. This is caused by its deceptiveness of order growing linearly with the
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Figure 8: Results for trap-5.
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Figure 9: Results for 6-bipolar.

problem size. Although the function is additively composed of subfunctions of order 3, it
is not sufficient to consider only BBs of order 3. Since for larger problem instances, the
computational requirements of the algorithm were extremely high, only results for problem
sizes up to n = 91 are presented. These results are shown in Table 2. Only results for the
BOA are presented, since the simple genetic algorithm failed in most of the runs even with
very large populations. It performed significantly worse than the BOA, and only results for
small problem instances were computed.

Table 2: Results for 0-peak function. The population sizes for the BOA ranged from
N = 1200 for n = 30 to N = 8900 for n = 91.

n Population size Fitness eval.
31 1200 11040
61 3300 40920
91 8900 143735

For the 2-D Ising spin-glass function, an instance of size n = 121 with the size of the
grid 11� 11 previously examined by Mühlenbein et al. (1998) was used. For this instance,
the function values in global optima are 178. The BOA converged to global optima in
all of 30 independent runs with population size of N = 2600. An average number of
fitness evaluations until successful convergence was 48620. This result is worse than the
results achieved with the FDA by Mühlenbein et al. (1998), where the FDA converged
to the optima in 11000 fitness evaluations. This is caused by the fact that in Mühlenbein
et al. (1998), the initial population was generated according to a local approximation of the
conditional marginal distributions and not by uniform random distribution as in the BOA,
and the selection pressure in the FDA was stronger. Moreover, the FDA got the distribution
estimate as input, while the BOA had to learn this on the run given no problem-specific
knowledge.

8 BOA and the Existing Theory

The class of distribution that can be encoded by Bayesian networks does not seem as rich
as the class of general conditional distributions used in the FDA. However, this section will
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formally show that this is not the case. For each conditional distribution (see Equation 28),
there exists an identical distribution in the form given by Equation 1. In this section, the
equivalence of the classes of distributions used by the FDA and the BOA will be formally
proven first. Then, the most important result of the theory of the FDA that can be applied
for a valid factorized distributions in this algorithm will be briefly presented. The presented
theory can be applied to an ideal case with the BOA algorithm when the network constructed
by the BOA is identical or approximately equal to a valid distribution factorization. It also
demonstrates the power of the used class of distributions to solve additively decomposable
problems.

Before proving that the class of conditional distributions is identical to the class of
distributions used in the BOA, we will prove the following lemma.

LEMMA 8.1: Each conditional probability P (X0; : : : ; Xk�1jR) can be decomposed into a product
of conditional probabilities with at most one variable on the left side so that

p(X0; : : : ; Xk�1jR) =

k�1Y
j=0

p(Xj jRj); (25)

where R is a subset of variables from X = (Xk; : : : ; Xn�1), and Rj for each j 2 f0; : : : ; k� 1g
is a subset of variables from X = (X0; : : : ; Xn�1) nXj .

PROOF: We will decompose the conditional probability by induction on the length of the
left side of the probability with the inductive hypothesis for m � 1, denoted by IH(m),
defined as

p(X0; : : : ; Xm�1jRm�1) =

m�1Y
j=0

p(Xj jRj) (26)

for some sets Rj for all j 2 f1; : : : ;m� 2g.

(1) IH(1): p(X0jR0) is already of the required form. The case is trivial.

(2) m > 1, IH(m) is true.
IH(m+ 1): Inductive step can be performed as follows:

p(X0; : : : ; Xm+1jRm+1) =
p(X0; : : : ; Xm+1; Rm+1)

p(Rm+1)

=
p(X0; : : : ; Xm+1; Rm+1)

p(Rm+1)
� p(Xm+1; Rm+1)

p(Xm+1; Rm+1)

= p(Xm+1jRm+1)p(X0; : : : ; Xm�1jRm; Xm)

(27)

By using IH(m) we get IH(m+ 1). 2

The following theorem proves that the class of distributions used in the BOA is identical
to the class of general conditional distributions considered in the FDA defined by

p(X) =
l�1Y
j=0

p(LijRi); (28)
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where X = (X0; : : : ; Xn�1) is a vector of variables, Li are disjoint subsets of variables from
X , each variable from X is in exactly one of these subsets, Ri are subsets of variables for
which Ri � L0 [ : : : [ Li�1, and p(LijRi) is the conditional probability of the variables Li

conditioned on the variables Ri.

THEOREM 8.1: The classes of distributions used in the BOA and the FDA are equivalent, i.e.,
for each conditional distribution, there exists an equivalent joint distribution encoded by a Bayesian
network, and for each distribution encoded by a Bayesian network, there exists an equivalent
conditional distribution.

PROOF: By definition, each distribution encoded by a Bayesian network is automatically a
conditional distribution (see Equations 1 and 28).

The opposite direction of the proof is somewhat more complicated. We will decompose
each component in the conditional distribution using the previous lemma. It is easy to see
that the resulting distribution is in the form defined in Equation 1. 2

Since we have proven that the classes of distributions used by the BOA and the FDA
are equivalent, the theory of the FDA can be used to demonstrate the power of the proposed
algorithm in case it finds the right model. We close this section by presenting the main
result of the theoretical investigation of the FDA performed by Mühlenbein et al. (1998).

Mühlenbein (1997) has shown that for the UMDA with an infinite population and
truncation selection, the number of generations G until convergence on the OneMax
function that simply counts the bits in an input string is given by

G =
��
2
� arcsin(2p0 � 1)

� pn
I
; (29)

where p0 is the proportion of 1’s on each string position in the initial population, n is the
size of a problem, and I is the selection intensity. The selection intensity (Mühlenbein,
1997) at a certain generation is given by

I =
�fs � �f

�
; (30)

where the �fs is an average fitness of the selected strings, �f is an average of the fitness of all
strings, and � is the standard deviation of the fitness values in the population. For most of
the common selection methods, the selection intensity is constant during the optimization.

On uniformly-scaled separable problems, the FDA behaves very similarly to the UMDA
on the OneMax function (Mühlenbein et al., 1998). This can be proven by mapping the
meta-variables in the FDA to the single variables in the UMDA (Mühlenbein and Mahnig,
1998). Some empirical results indicate that this might be the case for some decomposable
problems with overlapping building blocks as well (Mühlenbein et al., 1998). Therefore,
the latter theoretical result can be, with certain boundaries, used with the FDA and the
BOA. For uniformly-scaled separable problems (i.e., problems that are decomposable in
disjoint sub-problems), there are three important consequences of this result:

� For a population large enough, the algorithm using a valid distribution factorization
converges to the optimum.

� The number of generations until convergence is proportional to
p
n.

� The number of generations until convergence is inversely proportional to I .
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For the BOA, there is another consequence of this result. For k large enough for
considered Bayesian networks to encode a valid factorization distribution, the algorithm
has enough power to solve any uniformly-scaled separable problem in a number of gen-
erations proportional to the square root of a problem size

p
n and inversely proportional

to the selection intensity I . Our empirical results suggest that this result holds for some
decomposable problems with overlapping building blocks, too.

For exponentially scaled subfunctions, the algorithm should converge in linear time
with respect to the number of building blocks, with building blocks taking over in a domino-
like fashion from the most salient building block to the least salient one (Thierens et al.,
1998). Therefore, we expect the algorithm to converge in a number of generations propor-
tional to n. In general, the convergence should be approximately proportional to something
between

p
n and n and inversely proportional to I .

A critical problem for convergence is the required population size. In the FDA,
for populations larger than a critical population size, the number of generations until
convergence remains constant. It depends only on a problem size and the selection intensity
(see Equation 29). In the BOA, the population has to be somewhat larger so that the
algorithm is able to find a good model for the problem. Under the assumption of a good
model, the population-sizing theory of GAs may be used in order to determine the required
population size (Harik et al., 1999). We are currently investigating this topic.

9 Future Work

In spite of promising empirical results, there are a number of challenging problems to be
resolved in order to improve the proposed algorithm. We are currently investigating how
the population size affects the solution quality as well as performing the experiments in order
to confirm the statements about the expected number of generations until convergence from
Section 8.

Another question that remains unanswered is the optimal choice of the metric and the
network construction algorithms in order to eliminate the parameter k, which is the only
prior information about the problem that the BOA requires. We have performed a number
of experiments with recently suggested metrics that are biased toward simpler networks and
allowed to use local structures (Friedman and Goldszmidt, 1999). The experiments have
not shown significant improvement yet and a number of additional difficulties have arisen.
The parameter k can be seen, however, as a useful feature. It is the user who decides how
“deep” in modeling the problem we can go. By exploring a number of different settings, a
general picture of how difficult the problem is can be obtained, and the optimal settings can
be used in any future uses of the algorithm on a problem of similar properties. Moreover,
the BDe metric allows the use of prior knowledge about the problem. In this way, the user
no longer disregards prior knowledge but instead can use this knowledge to effectively bias
the search, thereby further improving the results.

Another direction of future research on the BOA is to tackle hierarchical problems
and to formally define the types of problems that the BOA can and cannot solve efficiently.
Problems with various codings (e.g., real-coded, combinatorial, etc.) can be solved by using
learning of Bayesian networks with continuous variables and other kinds of models.
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10 Summary and Conclusions

In this paper, the Bayesian optimization algorithm (BOA) was proposed. The proposed
algorithm belongs to the class of the estimation of distribution algorithms (EDAs), the
algorithms based on the estimation of the distribution of promising solutions and the
generation of new candidate solutions according to this estimate. The joint distribution
of promising points is estimated by means of techniques from modeling data by Bayesian
networks. The algorithm can cover interactions up to a specified order. In the BOA, the
structure of a problem is being discovered during optimization. The prior information
about the problem from various sources can be incorporated into the algorithm, although
this was not investigated in this paper.

The BOA is designed to solve decomposable problems of bounded difficulty. The
experiments have shown that the proposed algorithm outperforms the simple GA even on
decomposable problems with tight building blocks as the problem size grows. The gap
between the proposed algorithm and the simple GA would significantly enlarge for large
problems with loose building blocks. For loose mapping, the time requirements of the
simple GA grow exponentially with the problem size. On the other hand, the BOA is
independent of the ordering of the variables in a string, and therefore changing this would
not affect the performance of the algorithm. With the K2 metric, the BOA was even able
to efficiently solve problems where the pairwise interactions are not transparent, although
there are higher order interactions present in the problem (e.g., bipolar deceptive functions).
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